资源类型

期刊论文 258

会议视频 2

年份

2023 18

2022 20

2021 20

2020 22

2019 17

2018 12

2017 15

2016 9

2015 21

2014 11

2013 4

2012 8

2011 5

2010 8

2009 6

2008 8

2007 12

2006 4

2005 8

2004 4

展开 ︾

关键词

可持续发展 5

养殖模式 4

发展模式 3

三点弯曲梁 2

人工智能 2

开发模式 2

战略 2

整体穿刺 2

模式 2

混凝土 2

滑模控制 2

生态文明 2

管理模式 2

组合梁 2

资源化利用 2

ANSYS 1

BP神经网络 1

CBC-MAC模式 1

CCM模式 1

展开 ︾

检索范围:

排序: 展示方式:

Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0715-1

摘要: Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments. In this study, a high-performance ultrasonic elliptical vibration cutting (UEVC) system is developed to solve the precision machining problem of tungsten heavy alloy. A new design method of stepped bending vibration horn based on Timoshenko’s theory is first proposed, and its design process is greatly simplified. The arrangement and working principle of piezoelectric transducers on the ultrasonic vibrator using the fifth resonant mode of bending are analyzed to realize the dual-bending vibration modes. A cutting tool is installed at the end of the ultrasonic vibration unit to output the ultrasonic elliptical vibration locus, which is verified by finite element method. The vibration unit can display different three-degree-of-freedom (3-DOF) UEVC characteristics by adjusting the corresponding position of the unit and workpiece. A dual-channel ultrasonic power supply is developed to excite the ultrasonic vibration unit, which makes the UEVC system present the resonant frequency of 41 kHz and the maximum amplitude of 14.2 μm. Different microtopography and surface roughness are obtained by the cutting experiments of tungsten heavy alloy hemispherical workpiece with the UEVC system, which validates the proposed design’s technical capability and provides optimization basis for further improving the machining quality of the curved surface components of tungsten heavy alloy.

关键词: tungsten heavy alloy     ultrasonic elliptical vibration cutting     Timoshenko’s theory     resonant mode of bending     finite element method    

A novel structural modification to eliminate the early coupling between bending and torsional mode shapes

Nazim Abdul NARIMAN

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 131-142 doi: 10.1007/s11709-016-0376-4

摘要: In this paper, a novel structural modification approach has been adopted to eliminate the early coupling between the bending and torsional mode shapes of vibrations for a cable stayed bridge model generated using ABAQUS software. Two lateral steel beams are added to the middle span of the structure. Frequency analysis is dedicated to obtain the natural frequencies of the first eight mode shapes of vibrations before and after the structural modification approach. Numerical simulations of wind excitations are conducted for the 3D model of the cable stayed bridge with duration of 30 s supporting on real data of a strong wind from the literature. Both vertical and torsional displacements are calculated at the mid span of the deck to analyze both the bending and the torsional stiffness of the system before and after the structural modification. The results of the frequency analysis after applying lateral steel beams declared a safer structure against vertical and torsional vibrations and rarely expected flutter wind speed. Furthermore, the coupling between the vertical and torsional mode shapes has been removed to larger natural frequencies magnitudes with a high factor of safety. The novel structural approach manifested great efficiency in increasing vertical and torsional stiffness of the structure.

关键词: aeroelastic instability     structural damping     flutter wind speed     bending stiffness     torsional stiffness    

A simplified method for investigating the bending behavior of piles supporting embankments on soft ground

《结构与土木工程前沿(英文)》   页码 1021-1032 doi: 10.1007/s11709-023-0952-3

摘要: In recent years, concrete and reinforced concrete piles have been widely used to stabilize soft ground under embankments. Previous research has shown that bending failure, particularly during rapid filling on soft ground, is the critical failure mode for pile-supported embankments. Here, we propose an efficient two-stage method that combines a test-verified soil deformation mechanism and Poulos’ solution for pile–soil interaction to investigate the bending behavior of piles supporting embankments on soft ground. The results reveal that there are three possible bending failure scenarios for such piles: at the interface between the soft and firm ground layers, at mid-depths of the fan zone, and at the boundary of the soil deformation mechanism. The location of the bending failure depends on the position and relative stiffness of the given pile. Furthermore, the effect of embedding a pile into a firm ground layer on the bending behavior was investigated. When the embedded length of a pile exceeded a critical value, the bending moment at the interface between the soft and firm ground layers reached a limiting value. In addition, floating piles that are not embedded exhibit an overturning pattern of movement in the soft ground layer, and a potential failure is located in the upper part of these piles.

关键词: bending behavior     pile     embankment     soil−structure interaction     failure mode    

High-bandwidth nanopositioning via active control of system resonance

Linlin LI, Sumeet S. APHALE, Limin ZHU

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 331-339 doi: 10.1007/s11465-020-0619-x

摘要: Typically, the achievable positioning bandwidth for piezo-actuated nanopositioners is severely limited by the first, lightly-damped resonance. To overcome this issue, a variety of open- and closed-loop control techniques that commonly combine damping and tracking actions, have been reported in literature. However, in almost all these cases, the achievable closed-loop bandwidth is still limited by the original open-loop resonant frequency of the respective positioning axis. Shifting this resonance to a higher frequency would undoubtedly result in a wider bandwidth. However, such a shift typically entails a major mechanical redesign of the nanopositioner. The integral resonant control (IRC) has been reported earlier to demonstrate the significant performance enhancement, robustness to parameter uncertainty, gua-ranteed stability and design flexibility it affords. To further exploit the IRC scheme’s capabilities, this paper presents a method of actively shifting the resonant frequency of a nanopositioner’s axis, thereby delivering a wider closed-loop positioning bandwidth when controlled with the IRC scheme. The IRC damping control is augmented with a standard integral tracking controller to improve positioning accuracy. And both damping and tracking control parameters are analytically optimized to result in a Butterworth Filter mimicking pole-placement—maximally flat passband response. Experiments are conducted on a nanopositioner’s axis with an open-loop resonance at 508 Hz. It is shown that by employing the active resonance shifting, the closed-loop positioning bandwidth is increased from 73 to 576 Hz. Consequently, the root-mean-square tracking errors for a 100 Hz triangular trajectory are reduced by 93%.

关键词: nanopositioning stage     high-bandwidth     resonant mode control     tracking control     integral resonant control    

A new meshless approach for bending analysis of thin plates with arbitrary shapes and boundary conditions

《结构与土木工程前沿(英文)》 2022年 第16卷 第1期   页码 75-85 doi: 10.1007/s11709-021-0798-5

摘要: An efficient and meshfree approach is proposed for the bending analysis of thin plates. The approach is based on the choice of a set of interior points, for each of which a basis function can be defined. Plate deflection is then approximated as the linear combination of those basis functions. Unlike traditional meshless methods, present basis functions are defined in the whole domain and satisfy the governing differential equation for plate. Therefore, no domain integration is needed, while the unknown coefficients of deflection expression could be determined through boundary conditions by using a collocation point method. Both efficiency and accuracy of the approach are shown through numerical results of plates with arbitrary shapes and boundary conditions under various loads.

关键词: plate     bending     meshless method     collocation    

Improved prediction of pile bending moment and deflection due to adjacent braced excavation

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0961-2

摘要: Deep excavations in dense urban areas have caused damage to nearby existing structures in numerous past construction cases. Proper assessment is crucial in the initial design stages. This study develops equations to predict the existing pile bending moment and deflection produced by adjacent braced excavations. Influential parameters (i.e., the excavation geometry, diaphragm wall thickness, pile geometry, strength and small-strain stiffness of the soil, and soft clay thickness) were considered and employed in the developed equations. It is practically unfeasible to obtain measurement data; hence, artificial data for the bending moment and deflection of existing piles were produced from well-calibrated numerical analyses of hypothetical cases, using the three-dimensional finite element method. The developed equations were established through a multiple linear regression analysis of the artificial data, using the transformation technique. In addition, the three-dimensional nature of the excavation work was characterized by considering the excavation corner effect, using the plane strain ratio parameter. The estimation results of the developed equations can provide satisfactory pile bending moment and deflection data and are more accurate than those found in previous studies.

关键词: pile responses     excavation     prediction     deflection     bending moments    

Flexible resonant tank for a combined converter to achieve an HPS and LED compatible driver

Jin HU,Hui-pin LIN,Zheng-yu LU,Feng-wu ZHOU

《信息与电子工程前沿(英文)》 2015年 第16卷 第8期   页码 679-693 doi: 10.1631/FITEE.1500054

摘要: High pressure sodium (HPS) lamp has been widely used in street lighting applications because of its maturity, reliability, high lighting efficiency, long life-time, and low cost. Light emitting diode (LED) is expected as the next generation lighting source due to its continuously improving luminous efficacy, better color characteristic, and super long life-time. The two lighting sources may coexist in street lighting applications for a long time. A novel HPS and LED compatible driver is proposed which is rather suitable and flexible for driving HPS and LED in street lighting applications. The proposed driver combines the LLC and LCC resonant circuits into a flexible resonant tank. The flexible resonant tank may change to LLC or isolated LCC circuit according to the lighting source. It inherits the traditional HPS and LED drivers’ zero voltage switching (ZVS) characteristics and dimmable function. The design of the proposed flexible resonant tank considers the requirements of both HPS and LED. The experiments of driving HPS and LED on a prototype driver show that the driver can drive the two lighting sources flexibly with high efficiency.

关键词: High pressure sodium (HPS)     Light emitting diode (LED)     Compatible driver     Ballast    

Analysis of resonant coupling coil configurations of EV wireless charging system: a simulation study

M. LU, A. JUNUSSOV, M. BAGHERI

《能源前沿(英文)》 2020年 第14卷 第1期   页码 152-165 doi: 10.1007/s11708-019-0615-1

摘要: Nowadays, internal combustion engine vehicles are considered as one of the major contributors to air pollution. To make transportation more environmentally friendly, plug-in electric vehicles (PEVs) have been proposed. However, with an increase in the number of PEVs, the drawbacks associated with the cost and size, as well as charging cables of batteries have arisen. To address these challenges, a novel technology named wireless charging system has been recently recommended. This technology rapidly evolves and becomes very attractive for charging operations of electric vehicles. Currently, wireless charging systems offer highly efficient power transfer over the distances ranging from several millimeters to several hundred millimeters. This paper is focused on analyzing electromagnetically coupled resonant wireless technique used for the charging of EVs. The resonant wireless charging system for EVs is modeled, simulated, and then examined by changing different key parameters to evaluate how transfer distance, load, and coil’s geometry, precisely number of coil’s turns, coil’s shape, and inter-turn distance, influence the efficiency of the charging process. The simulation results are analyzed and critical dimensions are discussed. It is revealed that a proper choice of the dimensions, inter-turn distance, and transfer distance of the coil can result in a significant improvement in charging efficiency. Furthermore, the influence of the transfer distance, frequency, load, as well as the number of the turns of the coil on the performance of wireless charging system is the main focus of this paper.

关键词: electromagnetically coupled resonator     near-field power transfer     wireless power transfer (WPT)    

growth behavior of a 170 mm diameter stainless steel straight pipe subjected to combined torsion and bending

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 905-913 doi: 10.1007/s11709-021-0683-2

摘要: In a nuclear powerplant, the rotary equipment, such as a pump directly fitted with hanger in the piping system, experiences torsional and bending loads. Higher crack growth rate occurs because of this torsional load in addition to the bending load. Hence, it is necessary to study the fatigue behavior of piping components under the influence of combined torsional and bending load. In this study, experimental fatigue life evaluation was conducted on a notched stainless steel SA312 Type 304LN straight pipe having an outer diameter of 170 mm. The experimental crack depth was measured using alternating current potential drop technique. The fatigue life of the stainless steel straight pipe was predicted using experiments, Delale and Erdogan method, and area-averaged root mean square–stress intensity factor approach at the deepest and surface points of the notch. Afterward, the fatigue crack growth and crack pattern were discussed. As a result, fatigue crack growth predicted using analytical methods are in good agreement with experimental results.

关键词: fatigue life     Delale and Erdogan method     RMS–SIF approach     stainless steel     torsion and bending load     fatigue crack growth    

Analytical algorithms of compressive bending capacity of bolted circumferential joint in metro shield

《结构与土木工程前沿(英文)》   页码 901-914 doi: 10.1007/s11709-023-0915-8

摘要: The integrity and bearing capacity of segment joints in shield tunnels are associated closely with the mechanical properties of the joints. This study focuses on the mechanical characteristics and mechanism of a bolted circumferential joint during the entire bearing process. Simplified analytical algorithms for four stress stages are established to describe the bearing behaviors of the joint under a compressive bending load. A height adjustment coefficient, α, for the outer concrete compression zone is introduced into a simplified analytical model. Factors affecting α are determined, and the degree of influence of these factors is investigated via orthogonal numerical simulations. The numerical results show that α can be specified as approximately 0.2 for most metro shield tunnels in China. Subsequently, a case study is performed to verify the rationality of the simplified theoretical analysis for the segment joint via numerical simulations and experiments. Using the proposed simplified analytical algorithms, a parametric investigation is conducted to discuss the factors affecting the ultimate compressive bending capacity of the joint. The method for optimizing the joint flexural stiffness is clarified. The results of this study can provide a theoretical basis for optimizing the design and prediciting the damage of bolted segment joints in shield tunnels.

关键词: shield tunnel     segment joint     joint structural model     failure mechanism    

Thermal transport properties of monolayer phosphorene: a mini-review of theoretical studies

Guangzhao QIN, Ming HU

《能源前沿(英文)》 2018年 第12卷 第1期   页码 87-96 doi: 10.1007/s11708-018-0513-y

摘要: Phosphorene, a two-dimensional (2D) elemental semiconductor with a high carrier mobility and intrinsic direct band gap, possesses fascinating chemical and physical properties distinctively different from other 2D materials. Its rapidly growing applications in nano-/opto-electronics and thermoelectrics call for fundamental understanding of the thermal transport properties. Considering the fact that there have been so many studies on the thermal transport in phosphorene, it is on emerging demand to have a review on the progress of previous studies and give an outlook on future work. In this mini-review, the unique thermal transport properties of phosphorene induced by the hinge-like structure are examined. There exists a huge deviation in the reported thermal conductivity of phosphorene in literature. Besides, the mechanism underlying the deviation is discussed by reviewing the effect of different functionals and cutoff distance in calculating the thermal transport properties of phosphorene. It is found that the (vdW) interactions play a key role in the formation of resonant bonding, which leads to long-ranged interactions. Taking into account of the vdW interactions and including the long-ranged interactions caused by the resonant bonding with large cutoff distance are important for getting the accurate and converged thermal conductivity of phosphorene. Moreover, a fundamental insight into the thermal transport is provided based on the review of resonant bonding in phosphorene. This mini-review summarizes the progress of the thermal transport in phosphorene and gives an outlook on future horizons, which would benefit the design of phosphorene based nano-electronics.

关键词: thermal transport     phosphorene     resonant bonding    

Erratum to: Bending and vibration of a discontinuous beam with a curvic coupling under different axial

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0709-z

Parameter prediction in laser bending of aluminum alloy sheet

WANG Xuyue, XU Weixing, CHEN Hua, WANG Jinsong

《机械工程前沿(英文)》 2008年 第3卷 第3期   页码 293-298 doi: 10.1007/s11465-008-0046-x

摘要: Based on the basic platform of BP neural networks, a BP network model is established to predict the bending angle in the laser bending process of an aluminum alloy sheet (1–2 mm in thickness) and to optimize laser bending parameters for bending control. The sample experimental data is used to train the BP network. The nonlinear regularities of sample data are fitted through the trained BP network; the predicted results include laser bending angles and parameters. Experimental results indicate that the prediction allowance is controlled less than 5%–8% and can provide a theoretical and experimental basis for industry purpose.

关键词: control     industry purpose     nonlinear     network     aluminum    

软夹芯夹层梁最大弯曲正应力的计算

郝景新,刘文金,吴新凤

《中国工程科学》 2014年 第16卷 第4期   页码 92-95

摘要:

最大弯曲正应力是衡量夹层梁弯曲性能的重要参数之一,本文推导出了将软夹芯夹层梁等效成等 截面均质单层梁计算最大弯曲正应力的方法,并在此基础上进行三点弯曲试验的算例研究。结果表明:修正单层梁理论与层合梁理论计算的结果是一致的。当破坏载荷与夹层梁横截面的尺寸一定时,随着芯层与总厚度比的增加,修正单层梁理论计算的最大正应力值逐渐增加,而单层梁理论计算的结果为一恒定值。最大弯曲正应力修正公式的建立为夹层梁的工程应用提供理论基础。

关键词: 夹层梁     弯曲正应力     单层梁理论     弯曲特性    

Bending performance of composite bridge deck with T-shaped ribs

Qingtian SU, Changyuan DAI, Xu JIANG

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 990-997 doi: 10.1007/s11709-019-0532-8

摘要: This paper proposes a new type of steel-concrete composite deck, which is composed of orthotropic steel deck (OSD) with T-shaped ribs, concrete plate and studs connecting OSD and concrete plate. The OSD can act as framework for concrete plate and contribute to load bearing capacity at the same time, which could save construction time. Compared with conventional OSD system, this new type of composite bridge deck can also improve fatigue performance. Considering that this type of composite deck is not yet applied in practical engineering and its mechanical performance is not revealed in previous literatures, two full-scale specimens were designed and manufactured in this research. The mechanical performance, particularly, bending capacity in positive and negative region was carefully tested and analyzed. The load-deflection curve, load-slip relation, strain distribution in concrete and steel were obtained. The test results showed that the plastic performance of this kind of composite bridge deck was satisfying and the bending capacity was high.

关键词: bending performance     composite bridge deck     T-shaped steel ribs    

标题 作者 时间 类型 操作

Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy

期刊论文

A novel structural modification to eliminate the early coupling between bending and torsional mode shapes

Nazim Abdul NARIMAN

期刊论文

A simplified method for investigating the bending behavior of piles supporting embankments on soft ground

期刊论文

High-bandwidth nanopositioning via active control of system resonance

Linlin LI, Sumeet S. APHALE, Limin ZHU

期刊论文

A new meshless approach for bending analysis of thin plates with arbitrary shapes and boundary conditions

期刊论文

Improved prediction of pile bending moment and deflection due to adjacent braced excavation

期刊论文

Flexible resonant tank for a combined converter to achieve an HPS and LED compatible driver

Jin HU,Hui-pin LIN,Zheng-yu LU,Feng-wu ZHOU

期刊论文

Analysis of resonant coupling coil configurations of EV wireless charging system: a simulation study

M. LU, A. JUNUSSOV, M. BAGHERI

期刊论文

growth behavior of a 170 mm diameter stainless steel straight pipe subjected to combined torsion and bending

期刊论文

Analytical algorithms of compressive bending capacity of bolted circumferential joint in metro shield

期刊论文

Thermal transport properties of monolayer phosphorene: a mini-review of theoretical studies

Guangzhao QIN, Ming HU

期刊论文

Erratum to: Bending and vibration of a discontinuous beam with a curvic coupling under different axial

期刊论文

Parameter prediction in laser bending of aluminum alloy sheet

WANG Xuyue, XU Weixing, CHEN Hua, WANG Jinsong

期刊论文

软夹芯夹层梁最大弯曲正应力的计算

郝景新,刘文金,吴新凤

期刊论文

Bending performance of composite bridge deck with T-shaped ribs

Qingtian SU, Changyuan DAI, Xu JIANG

期刊论文